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Solution of functional equations and reduction of dimension in the local energy transfer theory
of incompressible, three-dimensional turbulence
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It is shown that the set of integrodifferential and algebraic functional equations of the local energy transfer
theory may be considerably reduced in dimension for the case of isotropic turbulence. This is achieved without
restricting the solution space. The basis for this is a complete analytical solution to the functional equations
Q(k;t,t8)5H(k;t,t8)Q(k;t8,t8) and H(k;t,s)H(k;s,t8)5H(k;t,t8). The solution is proved to depend only
on a single functionf(k;t) solely determiningQ andH. Hence the dimension of both the dependent and the
independent variables is reduced by one. From the latter, the corresponding two integrodifferential equations
are lowered to a single integrodifferential equation forf(k;t), extended by an integral side condition on thek
dependence off(k;t). In the limit n→0, a partial solution to the reduced set of equations is presented in the
Appendix.
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I. INTRODUCTION

In the context of fluid turbulence, a certain class of the
ries has been developed that is formulated in wave-num
space and relies on the truncated renormalized series ex
sion of the nonlinear convection term. The idea originated
the pioneering work of Kraichnan@1#, Edwards@2# and Her-
ring @3,4#, although these early theories were incompati
with the Kolmogorov power law@5,6#. There have been nu
merous later theories that use the Lagrangian coordinate
tem but we are concerned here with the local energy tran
~LET! theory that is unique in yielding Kolmogorov beha
ior in an Eulerian framework. An overview of the topic
given in @6#.

All these theories have in common their transport eq
tions that constitute a nonlinear integrodifferential equat
depending on the wave numberk5uku, time t, and an addi-
tional delay timet8. It is particularly due to the latter’s de
pendence ont8 that numerical computations may becom
forbiddingly expensive. In fact, this is the primary reaso
that such theories have almost exclusively been applie
homogeneous isotropic turbulence. The key difficulty w
respect to thet8 dependence is that at each time step a fi
depending onk and t8 has to be stored, wheret8 varies
between 0 andt. Hence, as time proceeds, increasingly larg
two-dimensional fields have to be kept in memory, from t
beginning up to the current timet. For this reason, usually
only very few ‘‘eddy turnover’’ times may be computed.

In the following sections it is shown that the structure
the LET equations is such that in the case of isotropic tur
lence, the dimensionality of both the dependent and the
dependent variables may be reduced by one. This goa
achieved without loss of information. Hence asingle field
has to be stored depending solely onk and t.

II. REDUCTION OF THE LET EQUATIONS

The LET equations in their most up to date form may
found in @7#.
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A. Solution of the Q and H functional equations

In the LET theory, a tensor-valued quantityH, called the
propagator, is defined; this relates the correlation tensor

Qi j ~k;t,t8!5^ui~k,t !uj~2k,t8!&, ~1!

to itself at different instants of time (t, t8 wheret.t8), thus

Qi j ~k;t,t8!5Him~k;t,t8!Qm j~k;t8,t8!. ~2!

A functional equation forH is given by

Him~k;t,s!Hm j~k;s,t8!5Hi j ~k;t,t8!, ~3!

Hi j ~k;t,t !5Di j ~k!, ~4!

whereDi j (k) is the projection operator

Di j ~k!5d i j 2
kikj

uku2
. ~5!

The equations~2! and~3! imply a certain restriction onQ
andH that will be explored below for the case of isotrop
turbulence. Under this assumption,H may be written as

Hi j ~k;t,t8!5Di j ~k!H~k;t,t8!. ~6!

Substituting Eqs.~5! and~6! in Eq. ~3!, we find the scalar
functional equation

H~k;t,s!H~k;s,t8!5H~k;t,t8!, ~7!

wherek5uku. A similar scalar equation may be derived fro
Eq. ~2! by invoking the isotropy condition

Qi j ~k;t,t8!5Di j ~k!Q~k;t,t8!. ~8!

Using Eqs.~8!, ~2! and ~6! we derive the scalar functiona
equation
©2001 The American Physical Society08-1
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Q~k;t,t8!5H~k;t,t8!Q~k;t8,t8!, ~9!

which is often called the fluctuation-dissipation relatio
From Eqs.~4! and ~6!, it follows that

H~k;t,t !51. ~10!

In the following, we derive a general solution to the Eq
~7! and~9!, the result also being consistent with Eq.~10!. For
this purpose we define a new functionH given by

H~k;t,t8!5 ln@H~k;t,t8!#. ~11!

Taking the logarithm of Eq.~7! and implementing Eq.~11!
we find

H~k;t,s!1H~k;s,t8!5H~k;t,t8!. ~12!

It should be noted that in principleH(k;t,t8) is a positive
function. However, in some numerical calculations negat
values have been found~see, e.g.,@7#!. In order to avoid any
restriction onH(k;t,t8), we allow for complex values o
H(k;t,t8).

In a second step, we differentiate Eq.~12! with respect to
t to obtain

]H~k;t,s!

]t
5

]H~k;t,t8!

]t
. ~13!

It should be noted that any differential consequence of
~12! may not stand, since integration with respect tot may
not necessarily lead back to Eq.~12!. Hence, any conse
quences of Eq.~13! have to be validated against Eq.~12!.

Apparently both sides of Eq.~13! depend onk andt while
the left-hand side also depends ons and the right-hand side
has an additionalt8 dependence. Thus, we have to ens
that both sides can only depend onk and t to make Eq.~13!
true. As an immediate result we conclude that

]H~k;t,s!

]t
5

]H~k;t,t8!

]t
[ f ~k;t !. ~14!

Considering only the equivalence to the right, we may in
grate with respect tot to find

H~k;t,t8!5h1~k;t !1h2~k;t8!, ~15!

whereh15* f dt and h2 are arbitrary functions of the argu
ments. As mentioned above, the result has to be cr
checked with the original equation~12!. Substituting Eq.
~15! in Eq. ~12!, we obtain

h1~k;t !1h2~k;s!1h1~k;s!1h2~k;t8!5h1~k;t !1h2~k;t8!.
~16!

Except for the second and third terms on the left-hand s
all expressions cancel. Hence we obtain the relation betw
h1 andh2 ,

h2~k;s!52h1~k;s![2h~k;s!. ~17!
02630
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Substituting Eqs.~17! and~15! in Eq. ~11!, we obtain the
general solution of Eq.~7!,

H~k;t,t8!5eh(k;t)2h(k;t8)[
f~k;t !

f~k;t8!
. ~18!

Condition ~10! is also solved identically. The function
f(k;t) has been introduced to show thatH(k;t,t8) is deter-
mined as a ratio of one function to itself at different time

Solution~18! also illustrates the symmetry transformatio
~see, e.g.,@8#! of Eq. ~7!

H̃~k;t,t8!5H~k;t,t8!eh(k;t)2h(k;t8), ~19!

such that Eq.~7! is form invariant under the transformatio
H→H̃. The latter symmetry also holds true for the nonis
tropic functional equation~3!.

For the purpose of finding a general solution to Eq.~9!,
we define a new function

Q~k;t,t8!5 ln@Q~k;t,t8!#. ~20!

Although we will see later thatQ(k;t,t8) is in principle
always positive, the following analysis holds true for neg
tive Q(k;t,t8) if Q(k;t,t8) is allowed to admit complex val-
ues. Strictly speakinga priori it is only known that the ma-
trix Qi j (k;t,t8) is positive semidefinite in the continuum
indicest and t8.

Substituting Eqs.~18! and ~20! in Eq. ~9! and taking the
logarithm, we find

Q~k;t,t8!5h~k;t !2h~k;t8!1Q~k;t8,t8!. ~21!

As done previously, we take the derivative with respect tt
to obtain

]Q~k;t,t8!

]t
5

]h~k;t !

]t
[g~k;t !. ~22!

As an immediate result we obtain

Q~k;t,t8!5h~k;t !1q~k;t8!, ~23!

where q(k;t8) appears due to the integration. Substituti
the latter back in Eq.~21! we find it is identically solved.
Employing the definition ofQ(k;t,t8) we obtain the solution

Q~k;t,t8!5eh(k;t)1q(k;t8)[f~k;t !c~k;t8!. ~24!

Herec has been introduced to illuminate the product stru
ture of Q.

The final form ofQ(k;t,t8) may be obtained by invoking
the symmetry int and t8, i.e.,

Q~k;t,t8!5Q~k;t8,t !. ~25!

Substituting Eq.~24! in Eq. ~25!, we obtain after rearranging
terms

f~k;t !

c~k;t !
5

f~k;t8!

c~k;t8!
[

1

g~k!
, ~26!
8-2
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whereg(k) has been introduced by the same arguments
above. We finally obtain

c~k;t !5f~k;t !g~k!. ~27!

In fact g(k) can be set equal to 1 without loss of gene
ality, the reason being the following: SinceQ(k;t,t8)
5f(k;t)f(k;t8)g(k), we may absorbAg(k) in f(k;t) call-
ing it f̃(k;t)5f(k;t)Ag(k) for the moment. The facto
g(k) can only be positive because in the limitt→t8 the
quantitiesQ(k;t,t) and f(k;t)2 are always positive. Intro-
ducingf̃(k;t) in Eq. ~18!, we find thatAg(k) cancels. Most
importantly, the same is also true for the evolution equati
for f(k;t) to be derived subsequently. Hence, we may
g(k)51 and the final solution of the Eqs.~7!, ~9!, and~25! is
given in terms of the new functionf(k;t)

Q~k;t,t8!5f~k;t !f~k;t8!, ~28!

H~k;t,t8!5
f~k;t !

f~k;t8!
. ~29!

Again, also the last part of this analysis accounts for ne
tive values of the dependent and independent variables~as
found in some numerical simulations! if complex variables
are employed.

B. Derivation of the reduced LET integro-differential
equations

In order to show consistency of the above solutions w
the LET transport equations, we may first give their un
stricted form for isotropic turbulence. The two-point tw
time correlation equation given in@7#

S ]

]t
1nk2DQ~k;t,t8!

5E L~k,j!F E
0

t8
H~k;t8,t9!Q~ j ;t,t9!Q~ uk2 ju;t,t9!dt9

2E
0

t

H~ j ;t,t9!Q~k;t8,t9!Q~ uk2 ju;t,t9!dt9Gd3 j , ~30!

along with the energy equation

S ]

]t
12nk2DQ~k;t,t !52E L~k,j!E

0

t

Q~ uk2 ju;t,t9!

3@H~k;t,t9!Q~ j ;t,t9!

2H~ j ;t,t9!Q~k;t,t9!#dt9d3 j ,

~31!

and Eqs.~7!, ~9!, and ~25! form a closed set of equation
where

L~k,j!5
@m~k21 j 2!2k j~112m2!#~12m2!k j

k21 j 222k jm
,

02630
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m5cosQk/ j5
k• j

ukuu ju
. ~32!

Note that Eq.~31! has a slightly different structure tha
Eq. ~30! since factors of 2 appear on both sides. These f
tors are due to thet-derivatives in Eq.~30! that change their
structure if Eq.~31! is derived in the limitt8→t.

Since a dimensional reduction forQ(k;t,t8) and
H(k;t,t8) has been accomplished due to Eqs.~28! and ~29!
we may in the final step derive the LET equation forf(k;t).
Equations~30! and ~31!, respectively, reduce to

S ]

]t
1nk2Df~k;t !

5E L~k,j!F E
0

t8f~ j ;t !f~ j ;t9!f~ uk2 ju;t !f~ uk2 ju;t9!

f~k;t9!

3dt92E
0

tf~ j ;t !f~k;t9!f~ uk2 ju;t !f~ uk2 ju;t9!

f~ j ;t9!

3dt9Gd3 j , ~33!

and

S ]

]t
1nk2Df~k;t !

5E L~k,j!E
0

t

f~ uk2 ju;t !f~ uk2 ju;t9!f~ j ;t !

3F f~ j ;t9!

f~k;t9!
2

f~k;t9!

f~ j ;t9!
Gdt9d3 j . ~34!

Note that the factors of 2 in Eq.~31! have canceled out an
no longer appear in Eq.~34!.

Equation~34! is the only equation left for the evolution o
the quantityf(k;t) and is fully consistent with Eq.~33!. It is
an easy matter to show that Eq.~33! reduces to Eq.~34! in
the limit t8→t.

Though consistency between Eq.~33! and~34! is apparent
we may still derive an additional condition from Eq.~33!.
Note that the left-hand side solely depends onk and t while
the right-hand side possesses an additionalt8 dependence.
Taking the derivative of Eq.~33! with respect tot8 and mul-
tiplying by f(k;t8), we obtain the integral equation

E L~k,j!f~ j ;t !f~ j ;t8!f~ uk2 ju;t !f~ uk2 ju;t8!d3 j 50,

~35!

which holds for arbitraryt and t8 and gives an additiona
constraint on the structure off(k;t). We conclude that in
the case of isotropic turbulence the LET equations have b
reduced to Eqs.~34! and ~35!.

It is still very difficult to obtain analytical solutions to th
nonlinear integro-differential equation~34! with the addi-
8-3
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tional constraint~35!. Up to now only a partial solution ha
been obtained in the limitn→0. However, this partial solu
tion has no physical significance since it possesses a fi
time singularity. For this reason, this result has been pu
the Appendix.

III. SUMMARY AND CONCLUSIONS

A method is presented to derive the complete solution
the algebraic functional equations forQ and H in the LET
theory for isotropic turbulence in terms of a single lowe
dimensional function. A reduction in the number of indepe
dent variables has been achieved. More importantly, a re
tion in dimension by one has been accomplished with
limiting the space of solutions.

In the second step the corresponding integrodifferen
equations of the LET theory have been reduced to a sin
equation plus an integral side condition. From a practi
point of view, the present results for the isotropic functio
Q andH may serve to reduce computational costs consid
ably since keepingQ(k;t,t8) andH(k;t,t8) in memory has
been boiled down to only storingf(k;t). This raises the
possibility that one might test the theory on inhomogene
and shear flows.

APPENDIX: PARTIAL SOLUTION IN THE LIMIT n\0

Due to the integrals in Eqs.~34! and~35!, it is difficult to
apply group theoretical methods to obtain analytical so
tions. For this reason we have found only one partial so
tion.

Supposef(k;t) has a product structure of the form

f~k;t !5 f ~k!g~ t !. ~A1!

Imposing the zero viscosity limitn→0 we obtain, respec
tively, from Eqs.~34! and ~35!

f ~k!
dg~ t !

dt
5E

0

t

g~ t9!dt9g~ t !2E L~k,j! f ~ uk2 ju!2f ~ j !

3F f ~ j !

f ~k!
2

f ~k!

f ~ j ! Gd3 j , ~A2!

and

g~ t !2g~ t8!2E L~k,j! f ~ j !2f ~ uk2 ju!2d3 j 50. ~A3!

Supposingg(t)5” 0 for all times we may divide Eq.~A3! by
g(t). In turn this may be used to cancel out the first term
brackets on the right-hand side of Eq.~A2!. Dividing the
resulting equation byf (k) and *0

t g(t9)dt9g(t)2, we obtain
the separated equation

dg~ t !/dt

E
0

t

g~ t9!dt9g~ t !2

52E L~k,j! f ~ uk2 ju!2d3 j [c1 ,

~A4!
02630
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where the equality can only be true if both sides equa
constant, here denoted byc1 .

Equating theg part on the left-hand side withc1 , multi-
plying through by*0

t g(t9)dt9, and differentiating with re-
spect to t, we obtain the nonlinear second-order ordina
differential equation~ODE!

d2g~ t !

dt2
g~ t !22S dg~ t !

dt D 2

5c1g~ t !4. ~A5!

The latter equation admits two symmetries one of wh
is a scaling symmetry and the other a translation in tim
From basic group theory, it is known that a second or
ODE, such as Eq.~A5! is solvable in terms of quadratures
it admits at least two symmetry groups@9#. For brevity we
introduce a simpler route, which nevertheless, implicitly
lies on these two groups. Substituting

dg~ t !

dt
5h~g! ⇒ d2g~ t !

dt2
5

dh~g!

dg
h~g!, ~A6!

in Eq. ~A5! and integrating the resulting Bernoulli-type fir
order ODE, we obtain

h~g!56g2A2c1 ln~g!1c2, ~A7!

wherec2 is a constant of integration.
Substituting the latter result in Eq.~A6! and integrating,

we obtain the solution to Eq.~A5! in implicit form

A p

2c1
ec2/2c1erfAln@g~ t !#1

c2

2c1
56~ t1c3!, ~A8!

wherec3 is an additional constant of integration and erf
the error function@10#. Introducing erf21 as the inverse of
erf we acquire the final solution to Eq.~A5!

g~ t !5expH Ferf21S 6A2c1

p
e2 c2/2c1~ t1c3! D G2

2
c2

2c1
J . ~A9!

Hence theg equation in Eq.~A4! is solved completely.
The f-equation, a nonlinear integral equation, is considera
more difficult and no analytical solution has been found y

In contrast to the Euler equations~the Navier-Stokes
equations in the limitn50), which admit two scaling groups
@11#, Eqs. ~34! and ~35! admit only one scaling group. In
particular, Eqs.~34! and ~35! do not admit scaling in time.
However, one has to draw a distinction between two diff
ent cases. Firstly, the Euler equation, which hasn50 and a
dissipation ratee50. Secondly, the Navier-Stokes equatio
at infinite Reynolds number, wheren→0 in such a manner
that the dissipatione is constant.

The procedure that leads to LET renormalizes a visc
interaction and that renormalization~the time-history integral
terms! has to be able to represent the finite-energy-tran
rate which is equal toe for stationary turbulence. Accord
ingly, as shown by Edwards@12,13# equation~34! must, in
place of the viscous term, contain a delta function of mag
tudee in the limit of infinite Reynolds number.
8-4
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