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Solution of functional equations and reduction of dimension in the local energy transfer theory
of incompressible, three-dimensional turbulence
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It is shown that the set of integrodifferential and algebraic functional equations of the local energy transfer
theory may be considerably reduced in dimension for the case of isotropic turbulence. This is achieved without
restricting the solution space. The basis for this is a complete analytical solution to the functional equations
Q(k;t,t")=H(k;t,t")Q(k;t’,t") andH(k;t,s)H(k;s,t")=H(k;t,t"). The solution is proved to depend only
on a single functionp(k;t) solely determiningQ andH. Hence the dimension of both the dependent and the
independent variables is reduced by one. From the latter, the corresponding two integrodifferential equations
are lowered to a single integrodifferential equation dgk;t), extended by an integral side condition on khe
dependence op(k;t). In the limit »—0, a partial solution to the reduced set of equations is presented in the
Appendix.
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I. INTRODUCTION A. Solution of the Q and H functional equations

In the LET theory, a tensor-valued quantity called the

In the context of fluid turbulence, a certain class of theo- ropagator, is defined:; this relates the correlation tensor

ries has been developed that is formulated in wave-number
space and relies on the truncated renormalized series expan- Qij(kit,t) =(ui(k,tyu;(—kt")), (1)
sion of the nonlinear convection term. The idea originated in

the pioneering work of Kraichnal], Edwardg 2] and Her-  to itself at different instants of timet (t” wheret>t'), thus
ring [3,4], although these early theories were incompatible

with the Kolmogorov power laW5,6]. There have been nu- Qij(kit,t") =Him(kt,t")Qm;(k;t’,t"). 2
merous later theories that use the Lagrangian coordinate sys- _ ) o

tem but we are concerned here with the local energy transfer A functional equation foH is given by

(LET) theory that is unique in yielding Kolmogorov behav-

ior in an Eulerian framework. An overview of the topic is Him(K;t,$)Hmj(k;s,t") =H;j(kit,t"), 3
given in[6]. N
All these theories have in common their transport equa- Hij(k;t,1)=Djj(k), (4)

tions that constitute a nonlinear integrodifferential equatiothereD_
depending on the wave numbler k|, timet, and an addi- !
tional delay timet’. It is particularly due to the latter’s de- Kk,
pendence ont’ that numerical computations may become Dii(K)=8:— —.
forbiddingly expensive. In fact, this is the primary reason, ! . [k|?
that such theories have almost exclusively been applied to

homogeneous isotropic turbulence. The key difficulty with  The equation$2) and(3) imply a certain restriction oQ
respect to thé’ dependence is that at each time step a fieldand H that will be explored below for the case of isotropic
depending ork andt’ has to be stored, wherg varies turbulence. Under this assumptidd,may be written as
between 0 antl Hence, as time proceeds, increasingly larger

j(K) is the projection operator

®

two-dimensional fields have to be kept in memory, from the Hij(kit,t") =D (K H(k;t,t"). (6)
beginning up to the current time For this reason, usually o ) ,
only very few “eddy turnover” times may be computed. Substituting Egs(5) and(6) in Eq. (3), we find the scalar

In the following sections it is shown that the structure of functional equation
the LET equations is such that in the case of isotropic turbu- ] e L
lence, the dimensionality of both the dependent and the in- H(kt,s)H(k;s, 1) =H(kt,t"), (7)

dependent variables may be reduced by one. This goal is - . .
acﬁieved without loss ofyinformation. Heyncesmglefiel% wherek=k|. A similar scalar equation may be derived from

has to be stored depending solely loandt. Eq. (2) by invoking the isotropy condition

Il. REDUCTION OF THE LET EQUATIONS Qij(kit,t") =Dy (k) QK t,t"). ®

The LET equations in their most up to date form may beUsing Egs.(8), (2) and (6) we derive the scalar functional
found in[7]. equation
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Q(k;t,t")=H(k;t,t")Q(k;t’,t"), 9) Substituting Eqs(17) and(15) in Eq. (11), we obtain the
general solution of Eq(7),
which is often called the fluctuation-dissipation relation.

From Egs.(4) and(6), it follows that d(k;t)

H(k;t,t')= et -htat) = —— (18)
H(kt,tH)=1. (10) (k')

Condition (10) is also solved identically. The function

In the following, we deriV(_a a gene_ral solujcion to the Eqs.¢(k;t) has been introduced to show tha¢k:t,t’) is deter-
(7) and(9), the result also being consistent with E80). For  ineq as a ratio of one function to itself at different times.

this purpose we define a new functiéhgiven by Solution(18) also illustrates the symmetry transformation
(see, e.g.[8]) of Eq. (7)

H(K;t,t)=In[H(K;t,t')]. (11)
Tkt +1) — (et 17y eh(ki) —h(kit")
Taking the logarithm of Eq(7) and implementing Eq(11) Hktt)=H(kit.t")e' ’ (19
we find such that Eq(7) is form invariant under the transformation
. ce ) - H—H. The latter symmetry also holds true for the noniso-
k;t,s)+H(k;s,t")=H(k;t,t"). 12 . . .
Rkt +Hkist) =H(kt,t) (12 tropic functional equation3).
It should be noted that in principlel(k;t,t’) is a positive For the purpose of finding a general solution to E2),
function. However, in some numerical calculations negativeVe define a new function
values have been fourdee, e.g.[7]). In order to avoid any oty — g
restriction onH(k;t,t"), we allow for complex values of Qlktt)=InfQ(kt,t)]. 20
H(k;t,t'). . . _ Although we will see later tha®(k;t,t’) is in principle
In a second step, we differentiate 2 with respectto  always positive, the following analysis holds true for nega-
t to obtain tive Q(k;t,t) if Q(k;t,t") is allowed to admit complex val-
_ L, ues. Strictly speaking priori it is only known that the ma-
JH(k;t,s) _ dH(Ktt") trix Qi (k;t,t") is positive semidefinite in the continuum
= . 13 X Qi )
at at indicest andt’.

Substituting Egs(18) and (20) in Eq. (9) and taking the

It should be noted that any differential consequence of Eglogarithm, we find
(12) may not stand, since integration with respect tmay
not necessarily lead back to E¢L2). Hence, any conse- Q(k;t,t")=h(k;t) —h(k;t") + Q(k;t",t"). (21)
guences of Eq(13) have to be validated against E4-2).

Apparently both sides of Eq13) depend ork andt while
the left-hand side also depends sand the right-hand side
has an additionat’ dependence. Thus, we have to ensure - .
that both sides can only depend kandt to make Eq(13) sQ(kit,t') = oh(k;H
true. As an immediate result we conclude that

As done previously, we take the derivative with respedt to
to obtain

h =k, 22

JH(K:t,S) - JH(K: ) As an immediate result we obtain

ot ot

=fG). (14) o(kit,t') =h(kt) +q(k;t’), 29

Considering only the equivalence to the right, we may inteWhere q(k;t’) appears due to the integration. Substituting
grate with respect to to find the latter back in Eq(21) we find it is identically solved.

Employing the definition of2(k;t,t’) we obtain the solution
H(k;t,t")=hq(k;t) +hy(k;t"), (15 _ »
' ’ Q(kit, ") =e" 0Tk = gty p(kit'). (24
whereh;= [fdt andh, are arbitrary functions of the argu- ) ) )
ments. As mentioned above, the result has to be crosdiere ¢ has been introduced to illuminate the product struc-

checked with the original equatiofl?). Substituting Eq. turé of Q. , , o
(15) in Eq. (12), we obtain The final form ofQ(k;t,t") may be obtained by invoking

the symmetry irt andt’, i.e.,

Pu(kit) +halkis) (i) +halkt) =t ) (kL) =0t 1. 25

Except for the second and third terms on the left-hand sid SEUbStItUtmg Eq(24) in Eq. (25, we obtain after rearranging
, . . rms

all expressions cancel. Hence we obtain the relation between

o andhz, pat) _ kit') 1

hy(k:s)= —hy(k:s)=—h(k;s). (17) wkt) gty k)

(26)
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where y(k) has been introduced by the same arguments as

above. We finally obtain
P(k;t)= p(k;t) ¥(Kk). (27)

In fact y(k) can be set equal to 1 without loss of gener-
ality, the reason being the following: Sinc®(k;t,t")
= ¢(k;t) p(k;t") y(K), we may absork/y(k) in ¢(k;t) call-
ing it p(k:t)=(k;t)Jy(k) for the moment. The factor
y(k) can only be positive because in the limit-t’ the
quantitiesQ(k;t,t) and ¢(k;t)? are always positive. Intro-
ducing é(k;t) in Eq. (18), we find thaty/y(k) cancels. Most
importantly, the same is also true for the evolution equation
for ¢(k;t) to be derived subsequently. Hence, we may s
v(k)=1 and the final solution of the Eq&), (9), and(25) is
given in terms of the new functiog(k;t)

Qkit.t)= (ki) p(kit'), (28)
(ki)

H(k;t,t")= . 29

=5 29

Again, also the last part of this analysis accounts for nega-

tive values of the dependent and independent variafales
found in some numerical simulationg complex variables
are employed.

B. Derivation of the reduced LET integro-differential
equations

In order to show consistency of the above solutions with
the LET transport equations, we may first give their unre-

stricted form for isotropic turbulence. The two-point two-
time correlation equation given Y]

J
— +vk?

SR Qit.t)

=fLW®U}HWWJU@ﬁmUmW—mmUM"

t
—f H(j ;t,t”)Q(k;t’,t”)Q(Ik—jl;t,t”)dt”}dﬁ, (30)
0
along with the energy equation

&%+2VW)Q“CLU=2JliKDJ:Qdk—HnJU
X[H(K;t,t")Q(j;t,t")
—H(j;t,t")Q(k;t,t")]dt"d3j,

(31)

and Egs.(7), (9), and (25) form a closed set of equations
where

[(k?+j?) = kj(1+2u?)](1— u?)k]
k2+j2—2Kju

L(k,j)=

!

el gt
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K-]

kIl

Note that Eq.(31) has a slightly different structure than
Eq. (30) since factors of 2 appear on both sides. These fac-
tors are due to thederivatives in Eq(30) that change their
structure if Eq.(31) is derived in the limitt’ —t.

Since a dimensional reduction foQ(k;t,t’) and
H(k;t,t") has been accomplished due to E@8) and (29)
we may in the final step derive the LET equation #k;t).
Equations(30) and (31), respectively, reduce to

m=Cc080,, ;= (32

d

+vk2)¢(k;t>
:f L(ki) Jt’¢(i;t)¢(j;t”)¢(|k—j|;t)¢(|k_j|;tu)
! 0 ¢(k;t")

th,,_ftd»(j:t>¢<k:t">¢(|k—j|;t>¢<|k—j|;t">
0 Bt

d3j,

x dt” (33

and

d
—+vk?

SR (k)

t
=f L(k,nf0¢(|k—jl;t>¢<lk—jl;t">¢<j;t>

st dlkit")
s(kit’)  G(iit")

Note that the factors of 2 in Eq31) have canceled out and
no longer appear in Eq34).

Equation(34) is the only equation left for the evolution of
the quantitys(k;t) and is fully consistent with Eq33). It is
an easy matter to show that E®@3) reduces to Eq(34) in
the limit t'—t.

Though consistency between Eg3) and(34) is apparent
we may still derive an additional condition from E(B3).
Note that the left-hand side solely dependskcendt while
the right-hand side possesses an additidhallependence.
Taking the derivative of Eq.33) with respect ta’ and mul-
tiplying by ¢(k;t’), we obtain the integral equation

X

(34

]dﬂdﬁ.

| Laistinan k=il gk-iit ) =o
35

which holds for arbitraryt andt’ and gives an additional
constraint on the structure af(k;t). We conclude that in
the case of isotropic turbulence the LET equations have been
reduced to Eqs(34) and (35).

It is still very difficult to obtain analytical solutions to the
nonlinear integro-differential equatio(84) with the addi-
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tional constraini35). Up to now only a partial solution has where the equality can only be true if both sides equal a
been obtained in the limit— 0. However, this partial solu- constant, here denoted loy.

tion has no physical significance since it possesses a finite Equating theg part on the left-hand side witb,, multi-
time singularity. For this reason, this result has been put iplying through by [tg(t”)dt”, and differentiating with re-

the Appendix. spect tot, we obtain the nonlinear second-order ordinary
differential equatiofODE)
I1l. SUMMARY AND CONCLUSIONS dzg(t) dg(t) 2
. _ _ ———g(t —2(—) =c,g(t)*. (A5)
A method is presented to derive the complete solution of dt dt

the algebraic functional equations fQandH in the LET

i X : . The latter equation admits two symmetries one of which
theory for isotropic turbulence in terms of a single lower-

dimensional function. A reduction in the number of ind n_is a scaling symmetry and the other a translation in time.
ensional function. A reauctio € number o €PeN"rrom basic group theory, it is known that a second order

d_ent _variables has been achieved. More import_antly, a _redu DE, such as EqA5) is solvable in terms of quadratures if
tion in dimension by one has been accomplished withouf; 5qmits at least two symmetry grouf@]. For brevity we

limiting the space of solutions. o _ _introduce a simpler route, which nevertheless, implicitly re-
In the second step the corresponding integrodifferentiafies on these two groups. Substituting

equations of the LET theory have been reduced to a single

equation plus an integral side condition. From a practical dg(t) _h d*g(t) dh(g)h AG
point of view, the present results for the isotropic functions dt @ = dtz dg (9), (A5

Q andH may serve to reduce computational costs consider- ) ) ) ) _
ably since keepin@(k;t,t') andH(k:t,t’) in memory has N Ed. (A5) and integrating the resulting Bernoulli-type first
been boiled down to only storing(k:t). This raises the order ODE, we obtain

possibility that one might test the theory on inhomogeneous 2
and shear flows. h(g)=*g°v2c;In(g) +c;, (A7)

wherec, is a constant of integration.
APPENDIX: PARTIAL SOLUTION IN THE LIMIT  »—0 Substituting the latter result in EA6) and integrating,

) i o we obtain the solution to EGA5) in implicit form
Due to the integrals in Eq$34) and(35), it is difficult to

apply group theoretical methods to obtain analytical solu- T e Co
tions. For this reason we have found only one partial solu- 5,87 ety InLg(D]+ 5= =(t+cy), (A8)
tion.
Supposep(k;t) has a product structure of the form wherecs is an additional constant of integration and erf is
the error function10]. Introducing erf! as the inverse of
d(k;t)=1(k)g(t). (A1) erf we acquire the final solution to E¢AS)
2
Imposing the zero viscosity limiv—0 we obtain, respec- . 1 \/@ _e2c
tively, from Eqgs.(34) and(35) g(t)=exp | erf 7| = s 27+ cg)
dg(t) (v . =, : e Cz
i 5= [ anava? | Lakprdk- i) oz (A9)
dt 0 2cq
f(j) fk] .. Hence theg equation in Eq(A4) is solved completely.
[m - m} 3, (A2)  Thef-equation, a nonlinear integral equation, is considerably
more difficult and no analytical solution has been found yet.
and In contrast to the Euler equationshe Navier-Stokes

equations in the limiv=0), which admit two scaling groups
[11], Egs.(34) and (35 admit only one scaling group. In
g(t)zg(t’)zf L(kj)f(j)*f(|k=j})?d®=0. (A3) particular, Eqs(34) and (35) do not admit scaling in time.

However, one has to draw a distinction between two differ-
Supposingg(t)#0 for all imes we may divide EA3) by ~ €nt cases. Firstly, the Euler equation, which hasO and a
g(t). In turn this may be used to cancel out the first term indissipation ratee=0. Secondly, the Navier-Stokes equation
brackets on the right-hand side of E@2). Dividing the @t infinite Reynolds number, where—0 in such a manner
resulting equation by (k) and [ig(t”)dt"g(t)2 we obtain that the dissipatior is constant.

the separated equation The procedure that leads to LET renormalizes a viscous
interaction and that renormalizati¢tine time-history integral
dg(t)/dt terms has to be able to represent the finite-energy-transfer
—_——= _J L(k,j)f(|k=j})2d®j=c,, rate which is equal te for stationary turbulence. Accord-
f g(t")dt"g(t)? ingly, as shown by Edwardsl2,13 equation(34) must, in
0 place of the viscous term, contain a delta function of magni-

(A4) tude € in the limit of infinite Reynolds number.
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